3.6.35 \(\int \frac {1}{x (a+b x^4)^2 \sqrt {c+d x^4}} \, dx\)

Optimal. Leaf size=132 \[ \frac {\sqrt {b} (2 b c-3 a d) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{4 a^2 (b c-a d)^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{2 a^2 \sqrt {c}}+\frac {b \sqrt {c+d x^4}}{4 a \left (a+b x^4\right ) (b c-a d)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {446, 103, 156, 63, 208} \begin {gather*} \frac {\sqrt {b} (2 b c-3 a d) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{4 a^2 (b c-a d)^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{2 a^2 \sqrt {c}}+\frac {b \sqrt {c+d x^4}}{4 a \left (a+b x^4\right ) (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^4)^2*Sqrt[c + d*x^4]),x]

[Out]

(b*Sqrt[c + d*x^4])/(4*a*(b*c - a*d)*(a + b*x^4)) - ArcTanh[Sqrt[c + d*x^4]/Sqrt[c]]/(2*a^2*Sqrt[c]) + (Sqrt[b
]*(2*b*c - 3*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(4*a^2*(b*c - a*d)^(3/2))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx &=\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{x (a+b x)^2 \sqrt {c+d x}} \, dx,x,x^4\right )\\ &=\frac {b \sqrt {c+d x^4}}{4 a (b c-a d) \left (a+b x^4\right )}+\frac {\operatorname {Subst}\left (\int \frac {b c-a d+\frac {b d x}{2}}{x (a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )}{4 a (b c-a d)}\\ &=\frac {b \sqrt {c+d x^4}}{4 a (b c-a d) \left (a+b x^4\right )}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^4\right )}{4 a^2}-\frac {(b (2 b c-3 a d)) \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )}{8 a^2 (b c-a d)}\\ &=\frac {b \sqrt {c+d x^4}}{4 a (b c-a d) \left (a+b x^4\right )}+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^4}\right )}{2 a^2 d}-\frac {(b (2 b c-3 a d)) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^4}\right )}{4 a^2 d (b c-a d)}\\ &=\frac {b \sqrt {c+d x^4}}{4 a (b c-a d) \left (a+b x^4\right )}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{2 a^2 \sqrt {c}}+\frac {\sqrt {b} (2 b c-3 a d) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{4 a^2 (b c-a d)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.33, size = 123, normalized size = 0.93 \begin {gather*} \frac {\frac {a b \sqrt {c+d x^4}}{\left (a+b x^4\right ) (b c-a d)}+\frac {\sqrt {b} (2 b c-3 a d) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{3/2}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{\sqrt {c}}}{4 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^4)^2*Sqrt[c + d*x^4]),x]

[Out]

((a*b*Sqrt[c + d*x^4])/((b*c - a*d)*(a + b*x^4)) - (2*ArcTanh[Sqrt[c + d*x^4]/Sqrt[c]])/Sqrt[c] + (Sqrt[b]*(2*
b*c - 3*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(b*c - a*d)^(3/2))/(4*a^2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.32, size = 146, normalized size = 1.11 \begin {gather*} \frac {\left (3 a \sqrt {b} d-2 b^{3/2} c\right ) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4} \sqrt {a d-b c}}{b c-a d}\right )}{4 a^2 (a d-b c)^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^4}}{\sqrt {c}}\right )}{2 a^2 \sqrt {c}}-\frac {b \sqrt {c+d x^4}}{4 a \left (a+b x^4\right ) (a d-b c)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x*(a + b*x^4)^2*Sqrt[c + d*x^4]),x]

[Out]

-1/4*(b*Sqrt[c + d*x^4])/(a*(-(b*c) + a*d)*(a + b*x^4)) + ((-2*b^(3/2)*c + 3*a*Sqrt[b]*d)*ArcTan[(Sqrt[b]*Sqrt
[-(b*c) + a*d]*Sqrt[c + d*x^4])/(b*c - a*d)])/(4*a^2*(-(b*c) + a*d)^(3/2)) - ArcTanh[Sqrt[c + d*x^4]/Sqrt[c]]/
(2*a^2*Sqrt[c])

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 862, normalized size = 6.53 \begin {gather*} \left [\frac {2 \, \sqrt {d x^{4} + c} a b c + {\left ({\left (2 \, b^{2} c^{2} - 3 \, a b c d\right )} x^{4} + 2 \, a b c^{2} - 3 \, a^{2} c d\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{4} + 2 \, b c - a d + 2 \, \sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{4} + a}\right ) + 2 \, {\left ({\left (b^{2} c - a b d\right )} x^{4} + a b c - a^{2} d\right )} \sqrt {c} \log \left (\frac {d x^{4} - 2 \, \sqrt {d x^{4} + c} \sqrt {c} + 2 \, c}{x^{4}}\right )}{8 \, {\left (a^{3} b c^{2} - a^{4} c d + {\left (a^{2} b^{2} c^{2} - a^{3} b c d\right )} x^{4}\right )}}, \frac {\sqrt {d x^{4} + c} a b c + {\left ({\left (2 \, b^{2} c^{2} - 3 \, a b c d\right )} x^{4} + 2 \, a b c^{2} - 3 \, a^{2} c d\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{4} + b c}\right ) + {\left ({\left (b^{2} c - a b d\right )} x^{4} + a b c - a^{2} d\right )} \sqrt {c} \log \left (\frac {d x^{4} - 2 \, \sqrt {d x^{4} + c} \sqrt {c} + 2 \, c}{x^{4}}\right )}{4 \, {\left (a^{3} b c^{2} - a^{4} c d + {\left (a^{2} b^{2} c^{2} - a^{3} b c d\right )} x^{4}\right )}}, \frac {2 \, \sqrt {d x^{4} + c} a b c + 4 \, {\left ({\left (b^{2} c - a b d\right )} x^{4} + a b c - a^{2} d\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-c}}{c}\right ) + {\left ({\left (2 \, b^{2} c^{2} - 3 \, a b c d\right )} x^{4} + 2 \, a b c^{2} - 3 \, a^{2} c d\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{4} + 2 \, b c - a d + 2 \, \sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{4} + a}\right )}{8 \, {\left (a^{3} b c^{2} - a^{4} c d + {\left (a^{2} b^{2} c^{2} - a^{3} b c d\right )} x^{4}\right )}}, \frac {\sqrt {d x^{4} + c} a b c + {\left ({\left (2 \, b^{2} c^{2} - 3 \, a b c d\right )} x^{4} + 2 \, a b c^{2} - 3 \, a^{2} c d\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{4} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{4} + b c}\right ) + 2 \, {\left ({\left (b^{2} c - a b d\right )} x^{4} + a b c - a^{2} d\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-c}}{c}\right )}{4 \, {\left (a^{3} b c^{2} - a^{4} c d + {\left (a^{2} b^{2} c^{2} - a^{3} b c d\right )} x^{4}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(2*sqrt(d*x^4 + c)*a*b*c + ((2*b^2*c^2 - 3*a*b*c*d)*x^4 + 2*a*b*c^2 - 3*a^2*c*d)*sqrt(b/(b*c - a*d))*log(
(b*d*x^4 + 2*b*c - a*d + 2*sqrt(d*x^4 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^4 + a)) + 2*((b^2*c - a*b*d)*
x^4 + a*b*c - a^2*d)*sqrt(c)*log((d*x^4 - 2*sqrt(d*x^4 + c)*sqrt(c) + 2*c)/x^4))/(a^3*b*c^2 - a^4*c*d + (a^2*b
^2*c^2 - a^3*b*c*d)*x^4), 1/4*(sqrt(d*x^4 + c)*a*b*c + ((2*b^2*c^2 - 3*a*b*c*d)*x^4 + 2*a*b*c^2 - 3*a^2*c*d)*s
qrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^4 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^4 + b*c)) + ((b^2*c - a*b*
d)*x^4 + a*b*c - a^2*d)*sqrt(c)*log((d*x^4 - 2*sqrt(d*x^4 + c)*sqrt(c) + 2*c)/x^4))/(a^3*b*c^2 - a^4*c*d + (a^
2*b^2*c^2 - a^3*b*c*d)*x^4), 1/8*(2*sqrt(d*x^4 + c)*a*b*c + 4*((b^2*c - a*b*d)*x^4 + a*b*c - a^2*d)*sqrt(-c)*a
rctan(sqrt(d*x^4 + c)*sqrt(-c)/c) + ((2*b^2*c^2 - 3*a*b*c*d)*x^4 + 2*a*b*c^2 - 3*a^2*c*d)*sqrt(b/(b*c - a*d))*
log((b*d*x^4 + 2*b*c - a*d + 2*sqrt(d*x^4 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^4 + a)))/(a^3*b*c^2 - a^4
*c*d + (a^2*b^2*c^2 - a^3*b*c*d)*x^4), 1/4*(sqrt(d*x^4 + c)*a*b*c + ((2*b^2*c^2 - 3*a*b*c*d)*x^4 + 2*a*b*c^2 -
 3*a^2*c*d)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^4 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^4 + b*c)) + 2
*((b^2*c - a*b*d)*x^4 + a*b*c - a^2*d)*sqrt(-c)*arctan(sqrt(d*x^4 + c)*sqrt(-c)/c))/(a^3*b*c^2 - a^4*c*d + (a^
2*b^2*c^2 - a^3*b*c*d)*x^4)]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 139, normalized size = 1.05 \begin {gather*} \frac {\sqrt {d x^{4} + c} b d}{4 \, {\left (a b c - a^{2} d\right )} {\left ({\left (d x^{4} + c\right )} b - b c + a d\right )}} - \frac {{\left (2 \, b^{2} c - 3 \, a b d\right )} \arctan \left (\frac {\sqrt {d x^{4} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{4 \, {\left (a^{2} b c - a^{3} d\right )} \sqrt {-b^{2} c + a b d}} + \frac {\arctan \left (\frac {\sqrt {d x^{4} + c}}{\sqrt {-c}}\right )}{2 \, a^{2} \sqrt {-c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(d*x^4 + c)*b*d/((a*b*c - a^2*d)*((d*x^4 + c)*b - b*c + a*d)) - 1/4*(2*b^2*c - 3*a*b*d)*arctan(sqrt(d*
x^4 + c)*b/sqrt(-b^2*c + a*b*d))/((a^2*b*c - a^3*d)*sqrt(-b^2*c + a*b*d)) + 1/2*arctan(sqrt(d*x^4 + c)/sqrt(-c
))/(a^2*sqrt(-c))

________________________________________________________________________________________

maple [B]  time = 0.27, size = 880, normalized size = 6.67 \begin {gather*} \frac {d \ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}\, a}+\frac {d \ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}\, a}+\frac {\ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-\frac {a d -b c}{b}}\, a^{2}}+\frac {\ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-\frac {a d -b c}{b}}\, a^{2}}-\frac {\ln \left (\frac {2 c +2 \sqrt {d \,x^{4}+c}\, \sqrt {c}}{x^{2}}\right )}{2 a^{2} \sqrt {c}}-\frac {\sqrt {-a b}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{8 \left (a d -b c \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) a^{2}}+\frac {\sqrt {-a b}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{8 \left (a d -b c \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)

[Out]

1/4/a^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)
*((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))+1
/4/a^2/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*(
(x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))-1/8
/a^2*(-a*b)^(1/2)/(a*d-b*c)/(x^2+(-a*b)^(1/2)/b)*((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)
/b*d-(a*d-b*c)/b)^(1/2)+1/8/a*d/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-2*
(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)
/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))+1/8/a^2*(-a*b)^(1/2)/(a*d-b*c)/(x^2-(-a*b)^(1/2)/b)*((x^2-(-a*b)^(1/2)/b)^2*d
+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)+1/8/a*d/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b
)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)
*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))-1/2/a^2/c^(1/2)*ln((2*c+2*(d*x^4+c)^(1/2)*
c^(1/2))/x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^2*sqrt(d*x^4 + c)*x), x)

________________________________________________________________________________________

mupad [B]  time = 5.87, size = 3017, normalized size = 22.86

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^4)^2*(c + d*x^4)^(1/2)),x)

[Out]

(atan((((((c + d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(8*(a^4*d^2 + a^2*b^2*c^2 - 2*a
^3*b*c*d)) - (((2*a^6*b^2*d^5 - 3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d) - ((c
 + d*x^4)^(1/2)*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*(64*a^7*b^2*d^5 - 256*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3
*d^2 + 320*a^5*b^4*c^2*d^3))/(64*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*
d - 3*a^4*b*c*d^2)))*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2))/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3
*a^4*b*c*d^2)))*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*1i)/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a
^4*b*c*d^2)) + ((((c + d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(8*(a^4*d^2 + a^2*b^2*c
^2 - 2*a^3*b*c*d)) + (((2*a^6*b^2*d^5 - 3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*
d) + ((c + d*x^4)^(1/2)*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*(64*a^7*b^2*d^5 - 256*a^6*b^3*c*d^4 - 128*a^4
*b^5*c^3*d^2 + 320*a^5*b^4*c^2*d^3))/(64*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*
b^2*c^2*d - 3*a^4*b*c*d^2)))*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2))/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c
^2*d - 3*a^4*b*c*d^2)))*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*1i)/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2
*d - 3*a^4*b*c*d^2)))/(((3*a*b^3*d^4)/16 - (b^4*c*d^3)/8)/(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d) - ((((c + d*x^
4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(8*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)) - (((2*a
^6*b^2*d^5 - 3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d) - ((c + d*x^4)^(1/2)*(3*
a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*(64*a^7*b^2*d^5 - 256*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3*d^2 + 320*a^5*b^4*
c^2*d^3))/(64*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*d^2))
)*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2))/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*d^2)))*(3*
a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2))/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*d^2)) + ((((c +
 d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(8*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)) + (
((2*a^6*b^2*d^5 - 3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d) + ((c + d*x^4)^(1/2
)*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*(64*a^7*b^2*d^5 - 256*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3*d^2 + 320*a^5
*b^4*c^2*d^3))/(64*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*
d^2)))*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2))/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*d^2))
)*(3*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2))/(8*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*d^2))))*(3
*a*d - 2*b*c)*(-b*(a*d - b*c)^3)^(1/2)*1i)/(4*(a^5*d^3 - a^2*b^3*c^3 + 3*a^3*b^2*c^2*d - 3*a^4*b*c*d^2)) - (at
an((((((2*a^6*b^2*d^5 - 3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(4*(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d)) - ((c + d
*x^4)^(1/2)*(64*a^7*b^2*d^5 - 256*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3*d^2 + 320*a^5*b^4*c^2*d^3))/(128*a^2*c^(1/2)
*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)))/(4*a^2*c^(1/2)) - ((c + d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2
- 20*a*b^4*c*d^3))/(32*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)))*1i)/(a^2*c^(1/2)) - ((((2*a^6*b^2*d^5 - 3*a^5*b
^3*c*d^4 + a^4*b^4*c^2*d^3)/(4*(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d)) + ((c + d*x^4)^(1/2)*(64*a^7*b^2*d^5 - 2
56*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3*d^2 + 320*a^5*b^4*c^2*d^3))/(128*a^2*c^(1/2)*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3
*b*c*d)))/(4*a^2*c^(1/2)) + ((c + d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(32*(a^4*d^2
 + a^2*b^2*c^2 - 2*a^3*b*c*d)))*1i)/(a^2*c^(1/2)))/(((3*a*b^3*d^4)/16 - (b^4*c*d^3)/8)/(a^5*d^2 + a^3*b^2*c^2
- 2*a^4*b*c*d) + (((2*a^6*b^2*d^5 - 3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(4*(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d
)) - ((c + d*x^4)^(1/2)*(64*a^7*b^2*d^5 - 256*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3*d^2 + 320*a^5*b^4*c^2*d^3))/(128
*a^2*c^(1/2)*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)))/(4*a^2*c^(1/2)) - ((c + d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*
b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(32*(a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)))/(a^2*c^(1/2)) + (((2*a^6*b^2*d^5 -
3*a^5*b^3*c*d^4 + a^4*b^4*c^2*d^3)/(4*(a^5*d^2 + a^3*b^2*c^2 - 2*a^4*b*c*d)) + ((c + d*x^4)^(1/2)*(64*a^7*b^2*
d^5 - 256*a^6*b^3*c*d^4 - 128*a^4*b^5*c^3*d^2 + 320*a^5*b^4*c^2*d^3))/(128*a^2*c^(1/2)*(a^4*d^2 + a^2*b^2*c^2
- 2*a^3*b*c*d)))/(4*a^2*c^(1/2)) + ((c + d*x^4)^(1/2)*(13*a^2*b^3*d^4 + 8*b^5*c^2*d^2 - 20*a*b^4*c*d^3))/(32*(
a^4*d^2 + a^2*b^2*c^2 - 2*a^3*b*c*d)))/(a^2*c^(1/2))))*1i)/(2*a^2*c^(1/2)) - (b*d*(c + d*x^4)^(1/2))/(2*(a^2*d
 - a*b*c)*(2*b*(c + d*x^4) + 2*a*d - 2*b*c))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x \left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)

[Out]

Integral(1/(x*(a + b*x**4)**2*sqrt(c + d*x**4)), x)

________________________________________________________________________________________